

Machine Learning Methods in Classification of Prolonged Radiation Therapy in Oropharyngeal Cancer

Matthew I. Saleem BS¹, Seungjun Ahn PhD², Eun Jeong Oh PhD³, Tristan Tham MD¹ ¹Department of Otolaryngology – Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell ²Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai ³Institute of Health System Science, Feinstein Institutes for Medical Research

INTRODUCTION

- Oropharyngeal squamous cell carcinoma (OPSCC) is a subtype of head and neck cancer (HNC) often treated with chemoradiation (CRT) and radiation therapy (RT)¹
- Delays in RT and CRT leading to prolonged radiation treatment duration (RTD) have been associated with poorer overall survival (OS) in OPSCC patients²
- Machine learning (ML) has been used to predict OS and occult nodal metastases in HNC patients, but never prolonged RTD in OPSCC patients³
- There is clinical utility in applying ML algorithms to predict treatment delay

METHODS

- Retrospective analysis of the National Cancer Database (NCDB) queried for OPSCC patients from 2004-2016 who received RT or CRT
- Outcome variable was RTD, dichotomized into prolonged (≥ 50 days) or not prolonged (< 50 days)
- Eight ML algorithms were compared to standard multivariable logistic regression across several classification performance metrics, with a 70%/30% training and test split
- Survival analysis of risk stratified groups was performed using Kaplan-Meier curves, further divided by race, tumor size, or HPV status

RESULTS

Figure 1 Strengthening the Reporting of Observational Studies in Epidemiology flowchart

AUROC 0.5 AUPRC 0.67 CIN -0.0 CSL 1.20 BRS 0.23

F1S 0.63 MCC 0.15 SENS SPEC 0.57 PPV 0.68 NPV

RESULTS CONT.

SSO	Enet	SCAD	МСР	RF	SVM-I	SVM-nl	XGBoost	Logistic
3 (0.02)	0.58 (0.02)	0.58 (0.02)	0.58 (0.02)	0.65 (0.02)	0.52 (0.06)	0.56 (0.02)	0.65 (0.02)	0.58 (0.02)
7 (0.02)	0.67 (0.02)	0.67 (0.02)	0.66 (0.02)	0.72 (0.02)	0.62 (0.05)	0.66 (0.02)	0.72 (0.02)	0.66 (0.02)
9 (0.21)	-0.11 (0.22)	0.00 (0.17)	0.00 (0.17)	0.01 (0.10)	0.33 (16.7)	-0.04 (0.25)	0.17 (0.09)	0.20 (0.11)
0 (0.42)	1.25 (0.43)	0.99 (0.31)	1.01 (0.32)	1.07 (0.14)	0.26 (36.5)	1.08 (0.56)	1.38 (0.20)	0.55 (0.18)
3 (0.00)	0.23 (0.00)	0.23 (0.00)	0.23 (0.00)	0.22 (0.00)	0.24 (0.00)	0.24 (0.00)	0.23 (0.00)	0.24 (0.00)
3 (0.02)	0.63 (0.03)	0.63 (0.02)	0.63 (0.02)	0.67 (0.04)	0.55 (0.12)	0.61 (0.10)	0.66 (0.04)	0.62 (0.06)
5 (0.03)	0.15 (0.03)	0.15 (0.03)	0.15 (0.03)	0.24 (0.03)	0.07 (0.10)	0.12 (0.03)	0.25 (0.03)	0.15 (0.02)
3 (0.03)	0.58 (0.04)	0.58 (0.03)	0.59 (0.02)	0.63 (0.09)	0.50 (0.18)	0.56 (0.17)	0.60 (0.06)	0.56 (0.10)
7 (0.04)	0.58 (0.05)	0.57 (0.04)	0.56 (0.03)	0.61 (0.09)	0.52 (0.19)	0.54 (0.17)	0.65 (0.06)	0.59 (0.10)
3 (0.02)	0.68 (0.02)	0.68 (0.02)	0.68 (0.02)	0.72 (0.02)	0.63 (0.07)	0.66 (0.03)	0.73 (0.02)	0.68 (0.02)
7 (0.02)	0.47 (0.02)	0.47 (0.02)	0.47 (0.02)	0.51 (0.03)	0.41 (0.07)	0.45 (0.03)	0.51 (0.03)	0.46 (0.03)

Figure 2 Performance metrics of eight machine learning methods based on complete-case analysis. For each metric, median is reported with mean absolute deviation in parentheses. Best results are bolded. Abbreviations: LASSO, least absolute shrinkage and selection operator; Enet, elastic-net; SCAD, smoothly clipped absolute deviation; MCP, minimax concave penalty; RF, random forest; SVM-I; support vector machine with linear kernel; SVM-nI; support vector machine with non-linear kernel; XGBoost, extreme gradient boosting; Logistic, logistic regression; AUROC, area under the receiver-operating characteristic curve; AUPRC, area under the precision-recall curve; CIN, calibration intercept; CSL calibration slope; BRS, Brier score; F1S, F1-score; MCC, Matthews correlation coefficient; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value

Figure 3 Kaplan-Meier curves of overall survival stratified by the predicted class of prolonged RT (High-risk vs Low-risk) using the RF model, separately by faceting variables: HPV status and race. The difference in survival between the predicted groups of prolonged RT was significant (P = 0.026) among Black patients in HPV- cases.

DONALD AND BARBARA ZUCKER SCHOOL of MEDICINE AT HOFSTRA/NORTHWELL

RESULTS CONT.

Figure 3 Kaplan-Meier curves of overall survival stratified by the predicted class of prolonged RT (High-risk vs Low-risk) using the RF model, separately by faceting variables: HPV status and clinical T stage. The difference in survival between the predicted class of prolonged RT was significant (P = 0.044) among cT3 in HPV+ cases.

CONCLUSIONS

• The RF model is superior to traditional logistic regression when stratifying risk of prolonged RTD in OPSCC patients

• RF risk stratified groups had significant survival differences based on Kaplan-Meier curves

• Classifying patients at high risk of prolonged RTD can potentially facilitate early intervention and improve overall survival

REFERENCES

1. Hamilton D, Khan MK, O'hara J, Paleri V. The changing landscape of oropharyngeal cancer management. J Laryngol Otol. 2017;131(1):3-7. doi:10.1017/S0022215116009178

2. Goel AN, Frangos M, Raghavan G, et al. Survival impact of treatment delays in surgically managed oropharyngeal cancer and the role of human papillomavirus status. Head & Neck. 2019;41(6):1756-1769. doi:10.1002/hed.25643

3. Bur AM, Holcomb A, Goodwin S, et al. Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncology. 2019;92:20-25. doi:10.1016/j.oraloncology.2019.03.011